Wednesday, October 12, 2011

Srinivasa Ramanujan


 Srinivasa Iyengar Ramanujan  (22 December 1887 – 26 April 1920) was a Indian mathematician and autodidact who, with almost no formal training in pure mathematics, made extraordinary contributions to mathematical analysis, number theory, infinite series andcontinued fractions. Ramanujan's talent was said by the English mathematician G.H. Hardy to be in the same league as legendary mathematicians such as Gauss, Euler, Cauchy, Newton and Archimedes and he is widely regarded as one of the towering geniuses in mathematics.
Born in KumbakonamTamil NaduIndia, to a poor Brahmin family, Ramanujan first encountered formal mathematics at age 10. He demonstrated a natural ability, and was given books on advanced trigonometry written by S. L. Loney. He mastered them by age 12, and even discovered theorems of his own, including independently re-discovering Euler's Identity. He demonstrated unusual mathematical skills at school, winning accolades and awards. By 17, Ramanujan conducted his own mathematical research on Bernoulli numbers and the Euler–Mascheroni constant. He received a scholarship to study at Government College in Kumbakonam, but lost it when he failed his non-mathematical coursework. He joined another college to pursue independent mathematical research, working as a clerk in the Accountant-General's office at the Madras Port Trust Office to support himself. In 1912–1913, he sent samples of his theorems to three academics at the University of Cambridge. Only Hardy recognized the brilliance of his work, subsequently inviting Ramanujan to visit and work with him at Cambridge. He became a Fellow of the Royal Society and a Fellow of Trinity College, Cambridge, dying of illness, malnutrition and possibly liver infection in 1920 at the age of 32.
During his short lifetime, Ramanujan independently compiled nearly 3900 results (mostly identities and equations). Although a small number of these results were actually false and some were already known, most of his claims have now been proven correct. He stated results that were both original and highly unconventional, such as the Ramanujan prime and the Ramanujan theta function, and these have inspired a vast amount of further research. However, the mathematical mainstream has been rather slow in absorbing some of his major discoveries. The Ramanujan Journal, an international publication, was launched to publish work in all areas of mathematics influenced by his work.
He met deputy collector V. Ramaswamy Aiyer, who had recently founded the Indian Mathematical Society. Ramanujan, wishing for a job at the revenue department where Aiyer worked, showed him his mathematics notebooks. As Aiyer later recalled:
I was struck by the extraordinary mathematical results contained in it [the notebooks]. I had no mind to smother his genius by an appointment in the lowest rungs of the revenue department.
Aiyer sent Ramanujan, with letters of introduction, to his mathematician friends in Madras. Some of these friends looked at his work and gave him letters of introduction to R. Ramachandra Rao, the district collector for Nellore and the secretary of the Indian Mathematical Society. Ramachandra Rao was impressed by Ramanujan's research but doubted that it was actually his own work. Ramanujan mentioned a correspondence he had with Professor Saldhana, a notable Bombay mathematician, in which Saldhana expressed a lack of understanding for his work but concluded that he was not a phony. Ramanujan's friend, C. V. Rajagopalachari, persisted with Ramachandra Rao and tried to quell any doubts over Ramanujan's academic integrity. Rao agreed to give him another chance, and he listened as Ramanujan discussed elliptic integrals, hypergeometric series, and his theory of divergent series, which Rao said ultimately "converted" him to a belief in Ramanujan's mathematical brilliance. When Rao asked him what he wanted, Ramanujan replied that he needed some work and financial support. Rao consented and sent him to Madras. He continued his mathematical research with Rao's financial aid taking care of his daily needs. Ramanujan, with the help of V. Ramaswamy Aiyer, had his work published in the Journal of Indian Mathematical Society.
One of the first problems he posed in the journal was:
He waited for a solution to be offered in three issues, over six months, but failed to receive any. At the end, Ramanujan supplied the solution to the problem himself. On page 105 of his first notebook, he formulated an equation that could be used to solve the infinitely nested radicals problem.

Using this equation, the answer to the question posed in the Journal was simply 3. Ramanujan wrote his first formal paper for the Journal on the properties of Bernoulli numbers. One property he discovered was that the denominators (sequence OEIS A027642) of the fractions of Bernoulli numbers were always divisible by six. He also devised a method of calculating Bn based on previous Bernoulli numbers. One of these methods went as follows:
It will be observed that if n is even but not equal to zero,
(i) Bn is a fraction and the numerator of {B_n \over n} in its lowest terms is a prime number,
(ii) the denominator of Bn contains each of the factors 2 and 3 once and only once,
(iii) 2^n(2^n-1){b_n \over n} is an integer and 2(2^n-1)B_n\, consequently is an odd integer.
In his 17–page paper, "Some Properties of Bernoulli's Numbers", Ramanujan gave three proofs, two corollaries and three conjectures. Ramanujan's writing initially had many flaws. As Journal editor M. T. Narayana Iyengar noted:
Mr. Ramanujan's methods were so terse and novel and his presentation so lacking in clearness and precision, that the ordinary [mathematical reader], unaccustomed to such intellectual gymnastics, could hardly follow him.
Ramanujan later wrote another paper and also continued to provide problems in the Journal. In early 1912, he got a temporary job in the Madras Accountant General's office, with a salary of 20 rupees per month. He lasted for only a few weeks. Toward the end of that assignment he applied for a position under the Chief Accountant of the Madras Port Trust. In a letter dated 9 February 1912, Ramanujan wrote:
Sir,
I understand there is a clerkship vacant in your office, and I beg to apply for the same. I have passed the Matriculation Examination and studied up to the F.A. but was prevented from pursuing my studies further owing to several untoward circumstances. I have, however, been devoting all my time to Mathematics and developing the subject. I can say I am quite confident I can do justice to my work if I am appointed to the post. I therefore beg to request that you will be good enough to confer the appointment on me.
Attached to his application was a recommendation from E. W. Middlemast, a mathematics professor at the Presidency College, who wrote that Ramanujan was "a young man of quite exceptional capacity in Mathematics". Three weeks after he had applied, on 1 March, Ramanujan learned that he had been accepted as a Class III, Grade IV accounting clerk, making 30 rupees per month.At his office, Ramanujan easily and quickly completed the work he was given, so he spent his spare time doing mathematical research. Ramanujan's boss, Sir Francis Spring, and S. Narayana Iyer, a colleague who was also treasurer of the Indian Mathematical Society, encouraged Ramanujan in his mathematical pursuits.

No comments:

Post a Comment